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We present a broad family of quantum baker maps that generalize the proposal of Schack and Caves to any
even Hilbert space with arbitrary boundary conditions. We identify a structure, common to all maps consisting
of a simple kernel perturbed by diffraction effects. This “essential” baker’s map has a different semiclassical
limit and can be diagonalized analytically for Hilbert spaces spanned by qubits. In all cases this kernel provides
an accurate approximation to the spectral properties—eigenvalues and eigenfunctions—of all the different
quantizations.
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I. INTRODUCTION

An accurate description of pure eigenstates of chaotic sys-
tems is still beyond us. The initial Berry-Voros ansatz �1�
assuming a microcanonical “uniformity” on the energy shell
in accordance with the Schmirelman theorem �2� leaves
space for weaker structures that lead to scarring by unstable
periodic orbits �3�. The choice of basis is of course crucial in
achieving a simple description. The standard choice for nu-
merical calculations is to diagonalize the Hamiltonian—or
the map—in an integrable basis: coordinate, momentum, os-
cillator, plane wave, etc. In these bases the chaotic eigen-
functions have very large participation ratios, of the order of
the Hilbert space dimension, assimilating them to random
eigenfunctions and excluding any perturbative description.
Another approach is to use a basis of “quasimodes” con-
structed on short periodic orbits �4�, which has been used
extensively to describe the eigenstates of the Bunimovich
stadium. Still another approach has been the study of the
distribution of zeros in analytic representations �5�.

In this paper we show that the eigenfunctions and eigen-
values of the quantized baker’s map—and a great variety of
its generalizations—can be approximated by a relatively
simple basis, which diagonalizes a kind of “essential” bak-
er’s map. In this basis the eigenfunctions of all quantizations
of the baker’s map have very small participation ratios indi-
cating that the basis vectors are excellent approximations to
the eigenfunctions. Moreover, the eigenvalues are well repro-
duced in first-order perturbation theory. This basis can be
analytically constructed for special Hilbert-space dimen-
sions, notably the qubit case when D=2N �6�. Our approach
extends the pioneering work by Lakshminarayan �7,8�, who
was the first to realize that some eigenfunctions had a simple
structure when looked upon differently in the Walsh-
Hadamard basis.

The organization of the paper is as follows: in Sec. II we
review the quantization of the baker’s map and propose a
wide generalization of the Schack and Caves �9� construction

for qubits by allowing arbitrary Hilbert-space dimensions
and Floquet angles. Utilizing a mixture of analytical and cir-
cuit techniques, we give a semiclassical interpretation of this
construction in terms of semiquantum maps that quantize the
baker’s map iterates �10�. We show that all these maps share
a common structure as the product of two unitary kernels: a
fixed one B common to all families and an almost diagonal
one containing diffraction effects. In Sec. III we analyze
spectral properties of this family of maps and show that B

provides an accurate basis for the description of eigenfunc-
tions and eigenvalues. When the dimension is D=2N, this
basis can be analytically constructed and is labeled by primi-
tive binary strings. For maps with antisymmetric boundary
conditions, this basis improves the Hadamard representation
discovered by Lakshminarayan �7�.

II. BAKER’S MAP QUANTIZATIONS

A. Quantum baker maps

The classical baker map is an example of an intuitive
canonical transformation that can be expressed in terms of
symbolic dynamics using the binary Bernoulli shift. The map
is defined in the unit square phase space �q , p� �0,1�� by

qi+1 = 2qi − �2qi� , �1�

pi+1 = �pi + �2qi��/2, �2�

where � � denotes the integer part, and i is the discrete time.
This map is area preserving, and geometrically stretches the
square by a factor of two in the q direction, squeezes by a
factor of a half in the p direction, and then stacks the right
half onto the left.

The map has a simple symbolic dynamics involving the
binary expansions of the coordinates, q=0, �0�1¯

=�k=0
� �k2

−k−1 and p=0, �−1�−2¯ =�k=1
� �−k2

−k ��i�0,1�. One
point of the phase space is represented by a bi-infinite sym-
bolic string

�p,q� = ¯ �−2�−1 � �0�1�2�3¯ �3�

where ��� separates position from momentum and the baker
map action upon symbols is
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�p,q� → �p�,q�� = ¯ �−2�−1�0 � �1�2�3 ¯ . �4�

The classical map has two symmetries: time-reversal �T�
reversing the direction of the flow and exchanging p�q;
and parity �R� exchanging q→1−q, p→1− p, and bitwise
logical NOT �0�1� upon symbols.

A quantization of the baker map is well known and pro-
ceeds by first setting up a Hilbert space with appropriate
boundary conditions. The phase space is made compact by
imposing periodic boundary conditions, thus turning it into a
two-torus. The corresponding quantum structure is character-
ized by quasiperiodic boundary conditions

��q + 1� = ei2����q�, �̃�p + 1� = e−i2���̃�p� , �5�

where 2�� and 2�� are arbitrary Floquet angles and � , �̃
are Fourier-transformed pairs. Solutions to Eq. �5� only exist
if hD=1 with D integer, and they span a Hilbert space HD

�,�

having finite dimension D. The position and momentum
eigenvectors are �qj� and �pj� with eigenvalues qj = �j+�� /D
and pk= �k+�� /D, respectively �j ,k=0, . . . ,D−1�. The vec-
tors of each basis are orthonormal, �qj �qk�= �pj � pk�=� jk and
the two bases are related via the finite Fourier transform with
arbitrary Floquet angles,

�F̂D
�,��kj 	 �pk�qj� =

1

D

e−i�2�/D��j+���k+��. �6�

The quantization of the baker map on an even-
dimensional Hilbert space can be achieved �11� converting
the most significant bit of position in the most significant bit
of momentum. The matrix of the map in mixed representa-
tion has the form of two blocks with the finite Fourier trans-
form of size D /2 in each one. In position representation we
have

Bpos
�,� = �FD

�,��−1�FD/2
�,� 0

0 FD/2
�,� � . �7�

This matrix product has a simple circuit representation in
terms of the Fourier transform. This is shown in Fig. 1,
where the lines represent subspaces ordered with the most

significant one on the bottom, the box is a unitary operator
acting in the respective space, and the temporal flux is from
left to right �opposite to the matrix representation� �12�.

The classical symmetries are preserved for some values of
the Floquet angles. T is preserved when �=�, and R when
�+�=1. The original quantization with �=�=0 was made
by Balazs and Voros �11�. In particular, the choice �=�
=1/2 �antisymmetric boundary conditions� yields a map
with both symmetries �13�.

We will use throughout techniques borrowed from quan-
tum information theory �12� allowing simple graphical rep-
resentations of unitary operators in tensor product Hilbert
spaces. For the baker’s map the well-known decomposition
of the Fourier matrix into qubit operations �14� when D
=2N allows a simple and efficient representation in terms of
circuits. In the Appendix we show that this decomposition
can be extended to arbitrary Floquet angles and other factor-
izations of D.

B. Family of baker maps on qubits

The original quantization scheme only required D to be
even. In the special case when D=2N, Schack and Caves
proposed an entire class of quantum baker maps on N qubits
�9,15�. They connected the binary representation of the clas-
sical baker map to the qubit structure using the partial Fou-
rier transform, defined in the general case as

Ĝn
�,� 	 1̂2n � F̂2N−n

�,� , n = 1, . . . ,N , �8�

where 1̂2n is the unit operator on the first n qubits and F̂2N−n
�,�

is the Fourier transform on the remaining qubits. This trans-
formation is used to define orthonormal basis states that are
localized on the unit-square phase space �15�.

This operator has a straightforward representation in
terms of quantum circuits as shown in Fig. 2.

A quantum baker map with N qubits is defined for each
value of n=1, . . . ,N by the unitary operator �9�

B̂N,n 	 Ĝn−1 Ŝn Ĝn
−1, �9�

where the dependence in � and � is implicit. The shift op-

erator Ŝn acts cyclically only on the first n qubits, i.e.,

Ŝn �x1� �x2�¯ �xn� �xn+1�¯ �xN�= �x2�¯ �xn� �x1� �xn+1�¯ �xN�.
Since Ŝ1 is the unit operator, B̂N,1	 B̂BVS is the Balazs-

Voros-Saraceno �BVS� map. On the other hand, it is easy to

show that B̂N,N is a map constructed only with swaps and one

qubit Fourier transform. Since Sn̂ commutes with Ĝn
−1, B̂N,n,

it can be written as
FIG. 2. Circuit representation of the partial Fourier transform

acting on the N-n less significant qubits.

FIG. 3. Circuit representation of B̂N,n in terms of the BVS baker
map.

FIG. 1. Circuit representation of the Balazs-Voros-Saraceno
quantum baker map. The thick line represents a subsystem of di-
mension D /2.
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B̂N,n = �1̂2n−1 � B̂N−n+1,1� � Ŝn. �10�

Thus the action of B̂N,n is equivalent to a cyclic shift of the n
most significant qubits followed by the application of BBVS to
the N−n+1 least significant qubits. This equivalence is
shown in circuit representation in Figs. 3 and 4. All these
maps have efficient implementations in terms of single qubit
operations, swaps, and controlled phases, even for arbitrary
Floquet angles �see the Appendix�.

We will dedicate ourselves to B̂N,N, the last map of this
family, in Sec. II D. This map has appeared in different con-
texts. In the literature on quantum walks �16� it is called the
“many coins” map and is used to study quantum walks with
many independent coin throws. In the context of quantum
graphs it represents a De Bruijn graph with complex phases
on its edges �17�. Nonnenmacher has observed that if the
Fourier transform is replaced by the Walsh-Hadamard trans-

form in the Balasz-Voros scheme, then B̂N,N is the Walsh
quantization of the baker’s map and constitutes a “toy
model” for the baker’s map �18�. Taking this observation into
account we can also think of the intermediate members of
the family as mixed Fourier-Walsh-Hadamard quantizations.

If one is willing to admit a BVS map in dimension D
=1, which would amount to a trivial inessential phase, then

ŜN—the simple cyclic shift on N-qubits—could also be con-
sidered as an extreme member of this family. It was in fact a
quantization of the baker’s map proposed by Penrose �19�,
but never pursued.

C. Quantization of an iterated map

We can give a different—semiclassical—interpretation to
the Schack and Caves construction that, besides clearly

showing that all maps in the family are equivalent in the
semiclassical limit �h=1/N→0�, allows a generalization to
Hilbert-space dimensions of a much wider class.

We start by recalling that the scheme utilized by Balazs
and Voros �11� to quantize the original baker map can also be
utilized to quantize its iterates. We denote B�T� the unitary
map resulting from the direct quantization of the T iteration
of the classical map. Since the classical map divides the q or
p segments into 2T equal intervals, we should initially as-
sume that 2T divides D so that each strip is quantized by
D /2T states. Notice that for this construction to be semiclas-
sically plausible there should be many quantum states in
each strip thus requiring D /2T→�. As an example, two it-
erations of the classical baker map require four strips as in
Fig. 5.

The quantization of this second iterate proceeds exactly as
for the first. The map B�2� can be quantized in the mixed
representation as

Bmix
�,��2� =


FD/4
�,� 0 0 0

0 0 FD/4
�,� 0

0 FD/4
�,� 0 0

0 0 0 FD/4
�,�
� . �11�

These quantizations for various values of T were studied
in Ref. �10�, and provide a semiquantum dynamics, some-
what intermediate between semiclassical and quantum
propagation. The matrix representation of B�T� can be
expressed easily using finite strings of bits in symbolic
dynamics.

�m�Bmix
T �n� = ��†� � FD/2T

�� , � = ��qn�, � = ��pm� ,

�12�

where ��q0�= ��0¯�T−1�= and �†�q0�= ��T−1¯�0�.
The tensor-product structure of B�T� allows a very simple

circuit representation �Fig. 6�, using the swap operator Ŝ2.
The inversion of the order of the most significant qubits cor-
responds to the transfer of a finite string of T bits of symbolic
dynamics from momentum to coordinate and is accom-
plished by T

2
� T−1

2
� swaps for even �odd� T.

It is important to observe that the direct quantization of
the T-step classical map and the Tth iteration of the one-step
quantum map do not produce exactly the same matrices. In
fact quantization and propagation are operations whose com-
mutativity is only justified in the semiclassical limit D /2T

→�. The Schack and Caves construction can then be seen
FIG. 5. Representation in phase space of two iterations of the

classical baker map.

FIG. 6. Circuits in the mixed representation for the quantization
of the first four iterations of the baker’s map.

FIG. 4. Circuit representation of the four members of the quan-
tum baker map for four qubits ��=�=0�. H is the Hadamard
operator.
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from a different perspective using the fact that B�T+T�� and
BTBT� represent different matrices, which are only asymptoti-
cally equal whenever the semiclassical condition is satisfied.
Thus we can define families of quantizations of the one-step
map as

B̂D,2n−1 	 B̂�n−1�†B̂�n�, n = 1, . . . ,N , �13�

where the only requisite is that 2N divides D, and the BVS

map is recovered for B̂D,1. It is clear from the semiclassical
arguments in Ref. �10� that all these families are semiclassi-
cally equivalent in the sense that they all represent valid and
different quantizations of the one-step baker map. However,
this equivalence requires that n remain fixed while D

2n →�. If,
on the other hand, we allow 2n�D we can expect strong
quantum deviations from this equivalence.

If we work with a Hilbert space spanned by N qubits and
for antiperiodic boundary conditions, it is easy to see that the
quantization obtained as a product of two semiquantum maps

is equivalent to the family B̂N,n of Eq. �9� obtained by Schack
and Caves. In Fig. 7, for example, we use circuits to show

that B̂�3�†B̂�4�	 B̂N,4.
In what follows we will use arbitrary Hilbert-space di-

mensions. Therefore we will label the different maps not by
the number of qubits but by this dimension. Thus the Schack

and Caves family will be labeled as B̂2N,2n−1. It should be
clear that many more inequivalent constructions are possible
along these lines, i.e., B�3�B�1�†B�1�† and many other similar
combinations.

This interpretation of the family as a product of semi-
quantum maps gives also a natural explanation to the result
of Ref. �20� who found that BN,N was abnormal in that its
classical limit was different from the baker map. Seen from a
semiclassical point of view, this result is quite natural as it
would involve the quantization of strips of dimension
D /2N=1 by means of rank one projection operators, thus
strongly violating any semiclassical justification. However,
as we show in Sec. III, it is precisely this “extreme” quantum
map that provides the approximate description of all the
other quantizations.

D. Quantum baker’s map generalization

Motivated by the Schack and Caves families for a space
spanned by qubits �Eq. �9��, we will generalize the quantum
baker’s map �QBM� to Hilbert spaces with arbitrary Floquet
angles and arbitrary even dimension. Assume that D
=2D�D	 in which case we interpret the map as operating in
a product Hilbert space HD=H2 � HD�

� HD	
. We relabel

the coordinate states as

�j� → ��j	j�� = ��� � �j	� � �j�� , �14�

where j=�D�D	+ j	D�+ j� and �=0,1; 0
 j	�D	; 0
 j�

�D� thus making H2 the “most significant” subspace and
H� the least significant one. The QBM families are defined
as

B̂D,D	
= �1̂D	

� B̂� � Ŝ2,D	
, �15�

where B̂ is the BVS baker’s map in a 2D�-dimensional Hil-
bert space with implicit dependence on the Floquet angles.

The shift Ŝ2,D	
between a qubit and a 	 subspace is a par-

ticular case of a shift defined as

ŜD1,D2
= �

j=0

D−1 �D1j − � j

D2
��D − 1���j� , �16�

where �j� is the integer part of j. This shift is a permutation
of the states j�HD, which exchanges the significance of the
D1 ,D2 subspaces.

B̂D,D	
has a very simple circuit representation �Fig. 8�,

which obviously generalizes the qubit circuit of Fig. 7.
Clearly, different maps with a constant value of D�D	 con-
stitute a family of quantizations that generalize the previous
qubit construction, which is recovered by choosing antiperi-
odic boundary conditions and a Hilbert space spanned by
qubits.

We now arrive at the main point of our construction: the
baker’s map in Fig. 8 can be split, using the factorization
properties of the discrete Fourier transform �cf. Fig. 17 in the
Appendix� as the product of two unitary kernels �Fig. 9�. The
first one, which can be considered as an essential baker’s
map, is an obvious generalization of the many coins map of
Fig. 4, and is common to all families. We define it as

B̂ = e−i2���Ŝ � �F̂2
†

� 1̂D�D	
� �17a�

=e−i2����1̂D�D	
� F̂2

†� � Ŝ , �17b�

where

FIG. 7. Equivalence of the quantum baker map with the semiclassical definition and with the Schack and Caves maps.

FIG. 8. Circuit representation for the quantum baker map fami-
lies. Each line represents a subspace with the most significant one at
the bottom.
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Ŝ 	 Ŝ2,D/2 �18�

is the shift operator used in Refs. �6,7�.
The position representation of B̂ is a square 2D�D	

�2D�D	 complex matrix.

B̂ = e−i2���

a ¯ 0 b ¯ 0

c ¯ 0 d ¯ 0

� � � � � �
0 ¯ a 0 ¯ b

0 ¯ c 0 ¯ d
� , �19�

where

F̂2
† = �a b

c d
� =

ei���


2
� 1 ei��

ei�� ei���+�+1� � . �20�

The second kernel in Fig. 9 contains all the peculiarities
of the different family members. It is diagonal in the sub-
space H	, while the interaction of the qubit line with sub-
space H� gives rise to diffraction effects. The matrix ele-
ments of this kernel are

���, j�� , j	� �K̂D,D	
��, j�, j	� = ��,��� j	,j

	�
��, j�� �K̂��, j�� , �21�

where

��, j�� �K̂��, j�� = e�i�/D��
 sin��D���
D� sin����

�22a�

with


 = �j�� − j���D� + 2� − 1� + �� − ���1

2
− ���D� − 1� ,

�22b�

� =
1

D�
� j�� − j� +

� − �

2
� . �22c�

The strong forward diffraction peak gives this kernel an
almost diagonal structure with weak off-diagonal elements
reflecting the block structure of the different sizes of sub-
spaces H� ,H	. When D�=1, the diffraction kernel is the
identity, and for the qubit case this is the many coins map
�16,21�.

The generalizations of the QBM can be rewritten in terms
of both kernels defined in Eqs. �17a�, �21�, and �22� as

B̂D,D	
= �1̂D	

� K̂�B̂ , �23�

where B̂D,1	 B̂ is the BBVS; and B̂D,D/2	B̂ is the essential
quantum baker’s map �EQBM�. A similar decomposition was
obtained in Ref. �22� for the qubit case.

The modulus of the matrix elements of both kernels for
D�=5, D	=3 are shown in Fig. 10.

It should be noticed that, even when antiperiodic bound-
ary conditions are chosen, this family of quantizations does
not respect the time-reversal symmetry of the original BBVS
map. On the other hand, they do commute with the parity R.

An alternative splitting of the QBM family can be consid-
ered if the F2

−1 gate in Fig. 9 is included in the diffraction
kernel. In this case the resulting essential baker map is the
shift map considered in Ref. �7�. We discuss the relative
merits of these two splittings in the conclusions.

III. SPECTRAL PROPERTIES

Based on the fact that the diffraction kernel is almost
diagonal, we can attempt to describe the spectral properties
of the family BD,D	

in terms of those of the simpler B. That
this is not a hopeless endeavor is shown in Fig. 11 where we

FIG. 9. Circuit representation for the QBM family defined in
Eq. �15�. Each line represents a subspace and the squares represent
the phase interaction �see the Appendix�.

FIG. 10. Modulus of the matrix elements of the diffraction ker-
nel �left� and EQBM �right�. D=2D�D	 with D�=5, D	=3, and the
Floquet angles �=�=0.5.
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compare the positive parity spectra of the family with D
=48 and various values of D� ,D	. All quantizations share
visually similar gaps and fluctuations indicating that a com-
mon structure is present. This fact is even more apparent
when the spectra are smoothed. The resulting spectral den-
sity is almost identical for all the maps.

A more quantitative measure of the similarity of the
eigenfunctions is given by the average participation ratio.
The participation ratio PR= ��r � ��r ����4�−1 is a rough mea-
sure of the number of basis elements ��r� needed to construct
the state ���, with PR� �1,D�. To assess the overall com-
plexity of the eigenstates �
�� in a given basis ��i� we com-
pute the average PR,

�PR� =
1

D
�
�=0

D−1 ��
i=0

D−1

���i�
���4� − 1� . �24�

This quantity is plotted in Fig. 12 for BBVS eigenstates ��
���
using several bases and varying the dimension of the Hilbert
space.

The �PR� in the position basis grows according to the
random matrix theory predictions �just below D /2� revealing
the chaotic nature of the QBM. The �PR� decreases signifi-
cantly using the shift eigenstates as a basis �7�, but has strong
dependences on the dimension of the map, which can be
associated to periodic orbits of the map and number theory.
The shift eigenstates are ���̄

k�= 1

T

� j=0
T−1e−i�2�/T�kj �� j� where �� j�

are the trajectory points S2,D/2
j ��0�.

The symmetrized shift, used in Ref. �6�, is constructed as
the parity projection of the shift basis,

��̄�̄
k� =

1

2

�1 ± R���̄�̄
k� , �25�

where R � j�= �D−1− j� is the parity acting in position basis.

This basis has a lower value of the �PR� and less fluctua-
tions with the dimension D. In the case of EQBM’s eigen-
states as a basis, the �PR� is much lower and grows slowly
and smoothly with D. The fact that �PR� is extremely small
for the EQBM basis shows that it should be possible to de-
scribe the QBM spectral properties �eigenfunctions and ei-
genvalues� in terms of the EQBM basis.

We have also explored the dependence of the growth of
�PR� in the EQBM basis for different values of the Floquet
parameters ��� ,���. Values close to the antisymmetric case
�1/2 ,1 /2� yield consistently smaller values.

A. Special case D=2N

When D=2N the EQBM is the toy model considered in
Refs. �18,23� and its spectral properties can be analyzed ex-

actly. Beginning with the slightly more general operator Û

= �û � 1̂2N−1� � Ŝ= Ŝ � �1̂2N−1 � û� where Ŝ is the shift operator
defined in Eq. �18� and û is any unitary operator in a qubit
space. The unitary matrix û can be diagonalized as

u = A�ei�0 0

0 ei�1
�A†, �26�

where A is a unitary 2�2 matrix. Thus, the unitary matrix U
can be written in a simpler way as U=A�NU0A†�N with U0
in computational matrix representation as

�j1�U0�j0� = exp�i�0 + i� j0

2N−1���1 − �0��
� �� j1 − 2j0 + � j0

2N−1��2N − 1�� . �27�

This operator takes a very simple form if we label the states

FIG. 11. Comparison of the positive parity spectra of the family
BD,D	

for D=48. The values of D� ,D	 are on the right. The top
spectrum corresponds to B and the bottom to BVBS. The continuous
lines are the smoothed spectral densities.

FIG. 12. �Color online� Participation ratio average as a function
of the dimension for BBVS with antiperiodic boundary conditions in
different bases: position basis, shift basis, symmetrized shift basis,
and EQBM basis.
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by a binary string, �j�→ ���	�a0¯aN−1� with j
=�i=0

N−1ai2
N−1−i. In that representation

U0�a0 ¯ aN−2aN−1 = eia0�1+i�1−a0��0�a1 ¯ aN−1a0� . �28�

This is a permutation, which will have cycles whose period
T�̄ will depend on the binary structure of �. We then have

U0
T�̄�� = ei
�̄��� , �29�

where 
�̄=N0�0+N1�1; T�̄ is the primitive period of the
string � and N0 and N1 are the number of zeros and ones in
the primitive string. Notice that N0+N1=T�̄ and that T�̄ must
divide N. The eigenvalues of U0 are then the shifted roots of
unity

��̄,k = ei�
�̄+2�k/T�̄� �30�

and the corresponding eigenstates are

��̃�̄
k� =

1


T�̄
�
m=0

T�̄−1

ei�mSm��0� , �31a�

where

�m = m��0 −

�̄ + 2�k

T�̄
� + ��1 − �0��

i=0

m−1

ai. �31b�

For example, the primitive orbits for N=4 are 0̄, 1̄, 01, 0011,
0001, and 0111 leading to two fixed points, one cycle of
period 2, and 3 cycles of period 4.

The eigenstates of the original operator U are then ob-
tained as

���̄
k� = A�N��̃�̄

k� . �32�

When u=e−i2���F2
†��,�� its eigenvalues and eigenfunctions

are given explicitly as

�0,1 = ei�0,1 = ± exp�i
�

2
�� + � − 2��� � i�� �33�

��0,1� =
1

2
�2 � 
2 cos��

2
�� + �� � ���−1/2

� �ei���0� + ��±
2ei��/2���+���i� − 1��1�� , �34�

where �� �0,� /4� is defined as

sin��� =
1

2

sin��

2
�� + ��� . �35�

These expressions then provide the spectral properties of the
EQBM in the qubit case D=2N for arbitrary Floquet angles.

For special values of � ,� the matrix F2
†��,�� has a definite

short period, i.e., �F2
†�0,0��2=1 and �F2

†�0.5,0.5��4=1 thus lead-
ing to a periodicity 2N or 4N for the full EQBM map. These
short periodicities imply that the spectrum given by Eq. �30�
will be highly degenerate for large values of N. Therefore the
eigenfunctions in Eq. �31� will not be unique and other linear
superpositions can also be constructed. They have been con-
sidered in Ref. �23� and shown to have a multifractal struc-
ture in the large N limit. For other values of � ,� the spec-
trum is, in general, not degenerate and this possibility does
not exist.

Notice that the eigenstates of −iF2
†�0.5,0.5� �with antiperi-

odic boundary conditions� in Eq. �34� are H �0� and H �1�
where H is the Hadamard operator

H =
1

2

�1 1

1 − 1
� . �36�

Therefore, for this case A=H, �0=� /2, and �1=0. The ex-
plicit expression of EQBM eigenstates with their respective
eigenvalues for 3 qubits are

��
0̄

0� = H�3�000 → �0̄,0 = 1,

��
1̄

0� = H�3�111 → �1̄,0 = − i ,

��001
k � =

1

3

H�3��001� + ei��1−4k/6��010� + ei��1−4k/3��001�

→�001,k = ei��4k−1/6�,

FIG. 13. Matrix of overlaps �M�	,�= ���	 �
��� with Floquet
angles �=�=0.5 for D=30 �left� and D=32 �right�. The eigenstates
of both bases are ordered by growing eigenphases.
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��011
k � =

1

3

H�3��011� + ei��1−2k/3��110� + ei��1−8k/6��101�

→�011,k = ei��2k−1/3�, �37�

with k=0,1 ,2.
Notice that in this argument the role of the tensor product

of Hadamard gates is that of diagonalizing F2
†�0.5,0.5�. This is a

peculiar case of the antisymmetric quantization �� ,�
=1/2 ,1 /2�. Other values would still lead to a tensor product
of one-qubit gates, but with a more complicated structure
given by Eq. �34�. This is different from the use of the Had-
amard transform in Ref. �6� where its role is due to restore
the parity symmetry to the shift map and is thus independent
of the Floquet angles considered.

B. Matrix of overlaps

While the average PR gives a global measure of the simi-
larity between the eigenbases of BBVS ��
��� and B ���	��, a
more detailed view is given by the matrix of overlaps M	�

= ���	 �
���. If the eigenstates are ordered by their phases on
the unit circle, the resulting matrix should be almost diagonal

with the off-diagonal elements signaling the importance of
small components other than the main ones.

Figure 13 shows the matrix of overlaps for D=30 and for
the qubit case D=32. For the latter, the spectrum is concen-
trated at the values ei2��k/20� and therefore many eigenstates
are degenerate. In this case we choose the basis as given in
Eqs. �32� and �31�. For D=30, on the other hand, there are
no degeneracies and the basis is unique. Figure 13 shows
clearly that in both cases most states �
�� have a very large
overlap with one basis state �this overlap being typically
�0.9� while a few are mixtures of two. Some inversions in
the ordering on the unit circle are also evident.

The eigenfunctions are well approximated by the states
that show no mixing in the matrix of overlaps. Figure 14
shows the comparison of three such eigenstates for D=32 in
the Husimi representation. The main difference in these
eigenfunctions is to the lack of time-reversal symmetry of
the basis states. This symmetry, present in �
��, is reflected
clearly in the pattern of zeros, which is symmetric with re-
spect to the main diagonal. Notice that, while the basis states
for D=2N can be analytically constructed, the basis of the
EQBM for D�2N has to be found numerically. What we
show here is that EQBM provides an excellent starting point
to study the spectral properties of any baker quantization for
all values of D.

C. Spectrum

Every QBM different from the EQBM has a complex
spectrum, which follows the random matrix theory �RMT�
predictions �nondegenerate, with eigenvalues repulsion, etc.
�24��. In general, the spectrum of EQBM will also be “cha-
otic.” But, when the Hilbert space is spanned by qubits and
for special Floquet angles, the EQBM has a short period and
its spectrum is degenerate. Therefore, in these cases, the
zeroth-order approximation with EQBM’s spectrum is not
enough to accurately represent the spectrum of QBMs.

The first-order approximation can be computed by multi-
plying the zeroth-order eigenvalues with the diagonal of the
perturbation matrix �the diffraction kernel� represented in the
EQBM basis. The corrected eigenvalues are then

� j
�1� = � j

�0��� j�KD,D�
�� j� . �38�

We find that the diagonal elements of the diffraction ker-
nel in Eq. �38� are close to the unit circle, their modulus
typically �0.9. We adopt their phase as a first-order correc-
tion to the � j

�0� eigenphases.
This approximation will be especially useful for the case

of Hilbert spaces spanned by qubits since the corrections
break degeneracy of the analytic EQBM’s spectrum. Using
Eqs. �21�, �22�, and �31�, the first-order approximation is

��̄,k
�1� =

1

T
�

l,m=0

T−1

ei��l,m���0�S†lA†�NKD,D�
A�NSm��0� , �39a�

��l,m� = �0�m − l� + ��1 − �0���
i=0

m−1

ai − �
j=0

l−1

aj�
+

��̄ + 2�k

T
�l − m + 1� . �39b�

FIG. 14. Husimi representation for three eigenstates of the BBVS

�left� and B �right� in a Hilbert space spanned by five qubits.
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In Fig. 15 we compare the spectra obtained with this ap-
proximation in the qubit case D=32 and for D=30.

In the nonqubit case �D=30�, the EQBM spectrum is al-
ready quite accurate and is notably improved by the pertur-
bation. It is clear that the gaps and quasidegeneracies of the
BVS are well reproduced and the smoothed density of eigen-
values is almost identical. The qubit case is not as well ap-
proximated since the zeroth order is very degenerate and the
corrections are too small. However, it is obvious that the
smoothed spectrum is greatly improved by the correction.

IV. CONCLUSION

We have shown that many valid quantizations of the bak-
er’s map have a simple matrix �B� as an essential core. This
matrix has a structure that captures many features of the
complexity of eigenfunctions of these maps. In spite of its
simplicity, this matrix generally cannot be analytically diago-
nalized. The numerical eigenfunctions are excellent approxi-
mations to most baker map’s eigenfunctions with an average
participation ratio of about 15 at D=500. Many individual
eigenfunctions have participation ratios of values near 1. The
eigenvalues are also well approximated in their fluctuation
properties. The smoothed density of states is almost identical
for all quantized families. The case D=2N is very special.
Some of its properties have been analyzed before as a toy
model �18� or as the extreme case of the Schack and Caves

family �20�. Its spectrum is highly degenerate and its semi-
classical limit is different from all of the others. Both the
eigenvalues and the eigenfunctions can be analytically ob-
tained and the basis constructed on primitive binary cycles.
They have participation ratios that smoothly interpolate those
of more general values of D. An important ingredient in B is

the shift Ŝ. In fact, we could well have shifted the F2
† gate in

Fig. 9 to the diffraction kernel and obtained a splitting in
terms of the shift multiplied by a modified “perturbation.”
This procedure would yield as an essential baker just the

shift Ŝ and would leave all the peculiarities of the different
families to a modified diffraction kernel. The shift basis, par-
ity projected, was recently adopted in Ref. �6�. It has the
advantage, over the EQBM basis, that it can be analytically
constructed for all values of D using the number theory prop-
erties of the shift. However, as we show in Fig. 12, it con-
sistently gives higher values of participation ratio.
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APPENDIX: FACTORIZATION OF DFT
WITH FLOQUET ANGLES

In the text we repeatedly used a circuit representation for
the Fourier transform. Here we provide the details of this
representation. The discrete Fourier transform in a
D-dimensional Hilbert space with Floquet angles is

�j�FD
�,��k� =

1

D

exp�− i
2�

D
�j + ���k + ��� . �A1�

If D=D1D2, we can relabel the states as j= j1+D1j2 and
k=D2k1+k2; with 0
 j1 ,k1
D1−1, and 0
 j2, k2
D2−1.
Notice that index j2 is more significant than j1 and vice versa
for ki. We then obtain

�j�FD1D2

�,� �k� = �j1�FD1

�,��k1��j2�FD2

�,��k2���j1,k2� , �A2�

where, besides the Fourier transforms in each subspace, there
is an interaction term between j1 and k2 given by

��j1,k2� = ei2��� exp�− i2�� j1 + �

D1
− ��� k2 + �

D2
− ��� .

�A3�

The circuit of this factorization is represented in Fig. 16.
The swap between the two subspaces is needed because

of the different significance assigned to the D1 ,D2 subspaces

FIG. 15. Eigenphases of the shift operator �S�, the EQBM �EB�,
the first-order correction of the EQBM with the kernel B �EBpert�,
and the BVS Baker �B� for dimension D=32 �top� and D=30 �bot-
tom�. The continuous lines are the smoothed spectral densities.

FIG. 16. Circuit representation of the factorization of the quan-
tum Fourier transform with Floquet angles in a Hilbert space with
dimension D=D1D2.
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in the decomposition of j and k. As a matrix in the product
space this swap takes the permutation form

ŜD1D2
= �

j=0

D−1 ��D1j − � j

D2
���D − 1���j� , �A4�

where �x� is the integer part. Notice that ŜD2D1
= ŜD1D2

−1 . For

D1=2 , Ŝ2D2
it is the shift operator utilized by Lakshmi-

narayan �8�.
Clearly the factorization is recursive so that it can be it-

erated until the different prime factors of D are reached.
When D=2N and �, �=0, the decomposition leads to the
well-known quantum circuit for the discrete Fourier
transform �DFT� �14� in terms of Hadamard gates and diag-
onal phases.

We give for reference the form of the interaction � for the
special case of interest here of one qubit interacting with a
subspace of dimension D �D1=2, D2=D� for the special val-
ues � ,�=0,0 and � ,�=1/2 ,1 /2,

�,� = 0,0 → ���,k� = e−i��/D��k,

�,� = 1/2,1/2 → ���,k� = ei��/2�e−i���−1/2���k+1/2/D�−1/2�,

where �=0,1 and k=0, . . . ,D−1. The first case gives the
controlled phase familiar form the quantum Fourier
transform �QFT�, while the second is a more symmetrical
interaction appropriate to the antisymmetric baker map.

Using this decomposition, the baker’s map in the position
representation can be split into the two kernels. This is done
pictorially in Fig. 17. The decomposition is used in Sec. II D
in the factorization of the QBM families.
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FIG. 17. Splitting of the BVS map in the product of two kernels.
The thick line represents a space of dimension D /2 while the thin
line is a qubit. The Floquet angles are implicit and the squares
represent the phase interaction in Eq. �A3�.
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